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ABSTRACT

A system of linear electroelastic equations for small fields superposed
on a bias is applied in the determination of the velocity of acoustic surface
waves in piezoelectric substrates subject to flexural biasing stresses. The
influence of the biasing stresses appears in the boundary conditions as well
as the differential equations. Direct calculations performed for both quartz
and lithium niobate when the spatial variation of the flexural biasing.state
is omitted indicate that the biasing stresses in the boundary conditions have
an important influence on the surface wave velocity. 1In addition, perturba-
tion calculations are performed which include the influence of the spatial
variation of all flexural biasing terms and it is shown that, for substrate
thickness-to-wavelength ratios well within the practical range, the spatial
variation in the biasing state has an appreciable effect on the velocity of

acoustic surface waves.
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1. Introduction

In recent years, a number of woxr:kersl_3 have measured the change in
acoustic surface wave velocity due to applied static biasing stresses,
primarily for application as pressure sensors. In one2 of the aforementioned
works an analytical treatment was presented, whose validity seems questionable
to us because the treatment is not related to the fundamental equations.
More recently, another independent analytical treatment was presented4, which
properly considers the elastic nonlinearities in the differential equations
but not in the boundary conditions.

In this paper a system of linear electroelastic equations for small

fields superposed on a bias5 which were obtained from general nonlinear

b
rotationally invariant electroelastic equations6, is applied in the determina-
tion of the velocity of surface waves in piezoelectric substrates subjeét to
flexural biasing stresses. The influence of the biasing stresses appears in
the boundary conditions as well as the differential equations. Although the
electric, electroelastic and elastic nonlinearities are included in the basic
equations, only the elastic nonlinearities are included in the calculations
because the nonlinear electroelastic coefficients are not known for either
lithium niobate or quartz, the two materials considered. The nonlinear
electroelastic coefficients may very well be significant in lithium niobate,
even though they are probably negligible in guartz. Nevertheless, numerical
results are obtained for Y-Z lithium niobate and y-cut and ST-cut quartz using
the published values of the second and third-order elastic, piezoelectric and
dielectric constants for these materials7’8.

The special case of biasing stresses due to flexural loading of a simply

supported plate is considered in detail and all components of the static deforma-

tion that occur in the linear equations for small fields superposed on a
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bias are analytically related to the applied loading. Analyses are performed
for both rotated Y-cut quartz and lithium niobate subject to biasing stresses
both in and normal to the propagation direction. Numerical results are pre-

sented for both Y-cut and ST-cut quartz for propagation in the digonal direc-
tion and for Y-cut lithium niobate for propagation in the 2Z-direction.

Finally, a perturbation equation9 for the change in surface wave velocity
under any biasing stress is employed and shown to yield results indistinguishable
from those obtained from the direct calculation for the particular case of
flexure considered here for wavelengths very small compared to the thickness
of the plate. 1In fact, since the perturbation procedure can readily treat
spatially varying biasing states, for which a direct calculation cannot be
performed, it has a significant advantage over a direct calculation in the
determination of the small changes in surface wave velocities due to biésing
states. Indeed, in the case of flexural loading considered here the biasing
terms actually are functions of position and this fact is ignored in the direct
calculation. When spatial variation of the biasing terms is omitted in the
perturbation calculation, the aforementioned agreement with the direct calcula-
tion for the thick substrate results. However, when the spatial variation in
the biasing terms is included in the perturbation calculation, a readily dis-
tinguishable change from the results of the direct calculation occurs for substrate
thicknesses less than about 100 wavelengths. The deviation increases signifi-
cantly with decreasing thickness and becomes appreciable for thicknesses of the
order of, say, 50 wavelengths, which is well within the practical range. The
results of the calculation for ST-cut quartz subject to a biasing stress in the

propagation direction have been compared with experimentlo and the agreement is

quite good.




2. Linear Electroelastic Equations for Small Fields Superposed on a Bias
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The linear electroelastic equations for small fields superposed on a bias

5
may be written in the form i
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and : and : are lengthy ex ressionss’9 involving the biasing electric
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field and static deformation, which vanish when the biasing electric field
vanishes and are not of interest here. Consequently, we do not present them
here. Equations (2.1) constitute the stress equations of motion and charge
equation of electrostatics referred to the position coordinates of material
points before the static deformation is applied, which are called reference
coordinates and are denoted XM' Equations (2.2) are the linear electreoelastic

constitutive equations and Egs. (2.3) contain the definitions of the effective

coefficients defined therein. In (2.1) - (2.3) iLY’ u_ and EL denote the com-

Y
ponents of the small field Piola-Kirchhoff stress tensor which is asymmetric,

mechanical displacement vector , and reference electric displacement vectors,

respectively; po and $ denote the reference mass density and small field




electric potential, respectively;

eMLY and € M denote the second order

SLYMY? L
elastic, piezoelectric and dielectric constants, respectively, which are the
constants that occur in the ordinary linear theory of piezoelectricity.

Before discussing the remaining quantities in (2.3) we note that in a

motion the present position of material points y may be written

Y& ,E) = X+w(X ) +uX,t), (2.4)

L

where w denotes the displacement due to the applied static loading. In addi-
tion, we note that the electric potentials @ in the body and % in free space
may be written in the respective forms

- Al X A Al %

PR ,E) =9 (X)) + X ,t), V&, =¥ X)+VEX ,¢t), (2.5)
where @1 and @1 denote the static biasing electric potentials in the bo@y and
in free space. In (2.3) TiM and E;B denote the components of the static
biasihg stress and strain, respectively, and Jl'isthe Jacobian of the static de-
formation. The biasing variables satisfy the appropriate static equations
given in (66) - (72) of Ref.5, or the equivalent equations using reference

coordinates as independent variables. Since we are interested in small biasing

strains only, we have

1508 1

eV Mgt Vet T ML, (2.6)
T1 = W, + ot
M - Simrs"R,s * ®re®,m - A

The quantities g denote the third-order elastic,

LYMYAB’ CamMLY’ S1mc - }fMLYBC
electrostrictive, third-order electric permeability and first-order electro-
elastic constants, respectively, and eo denotes the electric permittivity

of free space. For obvious reasons the notation employed here is designed to

be consistent with the notation of Refs.5 and 9. The carets over many variables

have been employed here because we consistently use the reference coordinates

i
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as independent variables. In particular the Greek subscripts are employed in
- : order to be consistent with the notation of Refs.5 and 9, in which Greek sub-
| scripts were consistently employed to denote the intermediate coordinates §a.
However, the Greek subscripts are not really important for any of the opera-
tions performed here and may be used interchangeably with the capital Latin
subscripts, which denote reference coordinates X . The cycles above variables
also have been introduced for consistency with Refs.5 and 9. We have employed
Cartesian tensor notation and ihtroduced vector notation in Eq. (2.4) only,

and the convention that a comma followed by an index denotes partial differ-
entiation with respect to a reference coordinate, the dot notation for partial

differentiation with respect to time and the summation convention for repeated

tensor indices.

To these equations we must adjoin the boundary conditionss’9

~ ~Ff . -~ ~ 53
MKy " Ky =0 M ﬁi)-o,
> 1 X
= u + w_ + (2.8)
® ?,L & 3,L Lt

where wL and uL in (2.8)3, respectively, denote the static biasing and small

field dynamic components of the mechanical displacement at the surface of the

solid, N, denotes the unit normal to the reference position of the surface and

~f £ £ f %

= + +
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£
‘fLYB’

£

St Sumy

~

L (2.9)

)

£ £ 5,9
d are lengthy expressions™’
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involving the biasing electric field and static deformation, which vanish when

the biasing electric field vanishes and are not of interest here.

we do not present them here.

i.e,,

In free space ; satisfies Laplaces equation

Consequently,
5

)
’
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Since the nonlinear electroelastic coefficients are not known for either
lithium niobate or quartz, or to our knowledge for any material, only the
elastic nonlinearities will be included in the remainder of the analysis and
in the calculations. However, we wish to emphasize the fact that we could
equally readily have included the electroelastic nonlinearities if the coef-
ficients were known, In the case of a purely elastic bias Egs. (2.1) and (2.2)

remain unchanged, Eq.(2.3)4 reduces to the form

= + E _+c w + w 2.
Sty = "ol ¥ Stvmvas®as * Snviry, k  Snran®y, K0
and Eqs.(2.3)5 and (2.3)6 are replaced by
B~ % Eg = 0. (2.12)
In the case of the purely elastic bias the boundary conditions in (2.8) reduce
NLKL'Y=0’ NL.&L=—NL<-:O¢,L, o=y, (2.13)

and the free space equation (2.10) remains unchanged.

3. Static Flexural Loading

Since an acoustic surface wave is sharply confined to the vicinity of the
surface of the substrate in which it propagates and in static flexure of a thin
plate the magnitude of the stress is maximum at the outer fibers, it is ad-
vantageous to employ flexural loading structures in order to maximize the in-
fluence on the surface wave velocity for a given loading. Consequently, in
this section we briefly discuss cylindrical flexure of thin plates for the type

of loading shown in Fig.l. The elementary theory of cylindrical flexure of

i,
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thin plates, which is known to be extremely accurate when applicable, rests
on a few critical simplifying assumptions. In most treatments of elementary
flexure, the theory is not presented in a way that readily indicates the
relation between the flexural variables employed and the mechanical displace-
ment vector of the three-dimensional taeory, which is needed here for the
static biasing terms in Eq. (2.11), nor is the theory discussed in the case
of anisotropy. However, Mindlin11 has presented a derivation of the equations
of the theory of flexure of thin anisotropic plates in a manner that clearly
indicates the relation between the plate variables and the mechanical dis-
placement vector of the three-dimensional equations. The brief discussion
presented for the special case of interest here is based on material in
Ref.11.

In the case of cylindrical flexure in the x_ -direction with restrained

15

motion in the x3-direction the aforementioned critical assumptions are that

the static displacement field w,, may be written in the form

1)
wl( ek ¥

Y

=w2(°) (zl) + zzw (2) (z

Y e 2D

; ¥, w=0, (2.4

1

(o)

11
the zero order  shearing strain 812

(o)

vanishes while the zero order shearing

(1)

stress le is related to the bending moment T11 = M by the usual static
equation
(o) _

T12 o M,l 7 (3.2)
and the first order thickness stress Tzuz') vanishes. The conditions S{g) =0 and
T;;) = 0, respectively, yield the important relations

1y _ (o) (2) _ (1)
- w2,1’ w, (c12/2c22)wl,1 . (3.3)
Substituting from (3.3) into the constitutive relation for M, we obtain
3
M=- (2h°/3)c* w(©) (3.4)

11%2,11

Ty PR (WK




where

* 2
c., =¢

1 = 1 - %/

Cho (3.5)

and it is to be emphasized that these equations hold for arbitrary orienta-

tions of Xy in the anisotropic case. From the loading shown in Fig.l, in the

region in which the surface wave velocity is measured, i.e., |z,| <b, we have
M=- Pa, (3.6)

where P is the load per linear dimension, which with (3.2) indicates that

T{:) = 0. Since the slope of the deflection curve vanishes at z, = 0, from
(3.4) we obtain
(0) _ 3 *
"’2,1' 21(3/2h )M/cll 5 (3.7)

which relates the loading to the slope of the deflection curve. From (3.1)

and (3.3) we obtain the important relation

w2’2=— .(c12/c22)w1,1' (3.8)
Now, from (3.1), (3.3) and (3.7), we obtain
w, . =z (3/20°)wct (3.9)
1,1 2 11 E
Moreover, from (3.1), (3.3) and (3.7), we find
3M 3M
w 2 ——m— S (3.10)
1,2 Loandio 05201 L TR
2h 11 2h c11

and all other three-dimensional displacement gradients vanish. From (2.6),

(3.1)3 and (3.7) - (3.10), we obtain

o]
1 M 1 3m C1p U1 1
xRy v Bt B e e, 1 By ®Vy o=V, (3.11)
2n’c¥ 2n’c¥ 22

for the three-dimensional strain field. 1In addition, from the usual three-

dimensional linear anisotropic stress-strain relations and (3.11), we have
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1 1
1 W 1 - ©3%2y 1 T3a 25%12
T e, R R Rt o Ty " fig = e (3.12).
2h c 22 ¥ 22
11 11

which are the nonvanishing components of stress resulting from (3.11).

Note that at the top fiber zz--h, Til is a maximum and has the value

1m

2
Ty, = 3W/2h". (3.13)

In the case of cylindrical flexure in the x3-direction, the analytical
treatment is the same except for the fact that the index 3 replaces 1 through-
out. Under these circumstances the pertinent displacement gradients and

strain components take the respective forms

3M 3M
s R Ve ) e o
33 33
Cc
1 3M 1o o1 gl EOeS g
B e T e Tl T S )
o - 33
in place of the forms in (3.10) and (3.11) and where
* oy =0t fd (3.16)
“33 " “a3 7 sy :
In addition, in place of (3.12) and (3.13) we have, respectively,
S8 1
wen, M b L8 (, TN £ DA
33 2 W37 3% 0 ® I3 Bos 7 48 5 e Xfap R .
33 : 33
Im _ 2
Tag = 3W/2H° . (3.18)

Thus, depending on the loading situation, we use either Egs. (3.10) - (3.12) or

Egs. (3.14), (3.15) and (3.17) in the static bias equation (2.11).

4. Application to Rotated Y-Cut Quartz and Y-Cut Lithium Niobate

For the case of static flexural biasing stresses both in and normal to the

propagation (xl)-direction, for rotated Y-cut quartz, Egs. (2.1) and (2.2), with
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From (2.13), with (2.10), for straight-crested waves with propagation wave-

number §, we have the boundary conditions
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For the direct calculations performed in this section we take Eil and E§3 to be
constant with respect to the decay length of the surface wave. This is a
reasonably accurate assumption for thick substrates for which the surface

wave decays rapidly compared to the variation of the flexural stress, but

not for relatively thin substrates. 1In addition, in the direct calculation
performed in this section we ignore the variable displacement gradient terms

e B B ) Rt 1 i 1

strains, because of their dependence on the position coordinate xl. The in-

in (3.10) and (3.14), which do not give rise to

fluence of this latter assumption is not too great because the neglected terms
do not contain the third order elastic constants, which are considerably larger
than the second order elastic constants. Calculations are performed for

cylindrical flexure either in the X.-direction or in the X -direction only,

1
not in both directions simultaneously. Consequently, in the calculations




performed the biasing terms containing either the index 3 or 1 in (4.2)
and (4.5) vanish.
A solution satisfying (4.2) and (4.4), with (4.5), may be taken in the

usual form

4 ;
iB Ex  if (X,-Vt)
¢ e SRR

v
m=
4 : :
~ ig €x_ i (X.-Vt) q
0 E il Tt (4.6)
m=1
where V, Bm’ Ai?), B(m) and C(m) are determined numerically so that (4.2)
and (4.4), witﬁ (4.5), are satisfied in the usual mannerl4_16. Calculations

AT,18 in xl—flexure and the

results are plotted as the line labeled a in Figs.2 and 3, respectively. 1In

have been performed for ST-cut and Y-cut quartz

addition, we have performed calculations for ST-cut quartz in xl-flexure when

the biasing terms, i.e., those proportional to Eil,

boundary conditions (4.4), with (4.5), and the resulting line is labeled a*

have been ignored in the

in Fig.2. It is clear from the figure that the difference is quite great and
that, ‘consequently, in general the nonlinearities in the boundary conditions

are quite important. Calculations have been performed for X.,-flexure also,

3
and the results appear as the line labeled b in Figs.2 and 3 for ST-cut and

Y-cut quartz, respectively. No line labeled a* appears in Fig.3.
For the case of static flexural biasing stresses both in and normal to

the propagation (X_,)-direction for Y-cut lithium niobate, Egs. (2.1) and (2.2)
3 3 2
12,13

)

with (2.11), the appropriate relations in Sec.3 and (4.1) take the form
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where @ and B are given in (4.3). Again the boundary conditions are given by

(4.4) and from (2.2) and (2.11l) we obt:ainlz’13 the pertinent constitutive

equations
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A solution satisfying (4.7) and (4.4), with (4.8), may be taken in the

usual form

N1

3 iB Ex_ iE(X.-Vt)
(m) _ (m) 2 3
o= T cmam e ,

m=]1

X i m)_ m) Pp5%, 18(X;3-VE)

P = C B e e 5 (4.9)
m=1
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(m) (m)

Y

and (4.4), with (4.8) are satisfied in the usual manner

and C are to be determined numerically so that (4.7)

15,18,19°

where V, Bm, a
Calculations‘
have been performed for Z-propagating surface waves on Y~cut lithium niobate20’7,
and the resulting lines are plotted in Fig.4. The notation on the lines in

Fig.4 has the same meaning as in the case of quartz in Figs.2 and 3, and no

a* line is plotted.

5. Perturbation Procedure

If we define the change in phase velocity due to the applied flexural

biasing state by

I\ =VM- v (5.1)

then it has been shown that for traction free and zero normal component of
electric displacement boundary conditions the first perturbation in phase

velocity is given by9

MV = B 2V E (5.2)
where ] zn/gl 2 S
~n aM ~nM
) i j J “{Yu'\(,L % 'B;'?’é,L] i o (5.3)
(o] o
% =e @M se 3
LYKV V,K KLY ,K’
AY ; (5.4)
a Al A <M
% = ®rxa’e, x ~ °Lx®, x’
with
AM M M ~M
uY=u‘/NM} c‘p =CP/NMJ
o 21/8) (5.5)
3 oj‘ J‘ M M
Ny=¢p uYuY dxzdx1 ’

o o
where the coefficients in (5.4) are defined in (2.3). 1In the case of a purely

elastic bias, which exists when electric and electroelastic coefficients are
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ignored, (2.11) and (2.12) hold in place of (2.3), and in place of (5.3) and ;
|
(5.4) we have
© 2n/ 2
j'dx fn K:‘“ ax (5.6)
Y, L ¢
(o]
(5.7) s

Bt

where & is given in (2.11).

LYKV

When (5.6) is applied to the case of rotated Y-cut quartz subject to

cylindrical flexure in the propagation (Xl)-direction, we obtain the form

2n/§

‘Id"z .r “%11

+'i'<"‘“M

22%2,2

The substitution of (5.7), with

in Sec.3 into (5.8) yields
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11), along with the appropriate relations
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where from (3.10) and (3.11), with Fig.l
X X
(1) ( 2) S 9 . - 5
1-F), v, B, LS 2, (5.10)
and
S 2 %
E =- 3M/2h € - (5.11)

When the integrals in (5.9) are performed, the resulting expression is
extremely cumbersome and not terribly revealing. Consequently, we do not
present the complete equation from which the calculations are made. However,
in order to give some idea of the type of terms that occur, we present two

typical distinct types of integrals. These are

® w/ © m/&m X
1l A 2 Sa ~
Idxz aX, Ep8y 18 4 = J.dxz .[ = (1’?)"’“1,1“1,1
o =11/ " o ..11/§M
* * *
% § c(“‘)A](.m)c(n) Al(n) 2 4 - 4 (m) (m) (n) A](-n) d
’R’[i" P ™ R :]"?5 E 7 T ]E ’
m-1 n=1 NM m n m=1 n=1 m n
© /Sy © /8y e
.[ 3 ot I s .[ =5 J s Ty TR W
o -m/8 o -1/ 8y
M
o 4 4 C(m)l\{m)cm)kémﬁmﬂ
el 2
M m=]1 n=1 NM(Bm+B )
4 4 m,m m¥ (n)*B p* .
eiom Y ) 1 ]E— G (5.13)
L &) * h
m=1 n=1 NM (Bm" Bn)
where
*
, i & & ¥y (m) (n) A\({n)
N, = 2 }: ~ : (5.14)
m=1 n=1 (B -B

M

the * denotes complex conjugate and 2h is the thickness of the plate, which is

many times larger than the wavelength of the surface wave so that

b e R AT A AL B
» , " :
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X
(W, @ — 0 at X, = 2h. (5.15)

Note that the biasing term in'the typical integral in (5.13) is the type of
term that was ignored in the direct calculations performed in Sec.4. When all
terms of this type, i.e., those not giving rise to a strain, are ignored along

with the xz-dependence of the strain El in the perturbation calculations for

11
both ST-cut and Y-cut quartz, the results are indistinguishable from the lines
labeled a in Figs.2 and 3, respectively. However, when the spatial variation of
all biasing terms in (5.9) is included in the perturbation calculations for ST-
cut and Y~cut quartz, the resulting curves plot as the lines labeled a’ in Figs.2
and 3, respectively. It can be seen from the figures that although the difference
between curves a and a’ is small, for relatively thick substrates, it increases
appreciably with decreasing thickness-to-wavelength ratio. This means that since
the change in such physical quantities as phase velocity with biasing deformation
is very small, the perturbation procedure is significantly more accurate than the
direct calculation for the determination of such quantities because it enables

the influence of variable biasing terms to be included in the calculation.

When perturbation calculations are performed for ST-cut and Y-cut quartz subject

to cylindrical flexure in the X, -direction, i.e., normal to the propagation direc-

3
tion, the resultingcurvec: plot as the curves labeled b’ in Figs.2 and 3, respect-
ively. In this case no terms due to the variable biasing diaplacement gradients

W, 4 and V3o survive in the perturbation calculation because they are odd in X
b )

and the surface wave is independent of X

3
3°
When (5.6) is applied to the case of Y-cut lithium niobate subject to

cylindrical flexure in the propagation (x3)-direction, we obtain the form

® 1'\’/§M
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The substitution of (5.7), with (2.11), along with the appropriate relations

in Sec.3 into (5.16) yields
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where from (3.14) and (3.15), with Fig.1l, we have

w =-T3§S, (5.18)

X
3 58

—_. —_ B
(1 b e e I

2,3

and

S

~ 20
E =- 3M/2h Ca3 - (5.19)

As in the case of quartz and for the same reasons we do not present the full

equations from which the calculations were made, but instead present the two

typical distinct types of integrals
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W sl A b i (5.22)
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The results of perturbation calculations for Y-cut, Z-propagating surface waves

yield curves a’ and b’ in Fig.4.
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Figure 1

Figure 2

Figure 3

Figure 4

FIGURE CAPTIONS

Schematic Diagram of the Surface Wave Structure Showing
the Applied Static Loading

Relative Change in Surface Wave Velocity Per Unit
Applied Maximum Extensional Biasing Strain vs. Thickness-
Wavelength Ratio for ST-X Quartz. The curves a' and b'
are for cylindrical flexure in and normal to the
direction of propagation, respectively.

Relative Change in Surface Wave Velocity Per Unit
Applied Maximum Fxtensional Biasing Strain vs. Thickness-
Wavelength Ratio for Y-X Quartz. The notation is the
Same as in Fig. 2,

Relative Change in Surface Wave Velocity Per Unit
Applied Maximum Extensional Biasing Strain vs. Thickness-
Wavelength Ratio for Y-Z Lithium Niobate. The notation
is the same as in Fig.2.
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